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SECTION 1

INTRODUCTION AND SUMMARY

This is the second quarterly technical progress report for Contract No.
DAAK70-77-C-0248, Prototype Automatic Target Screener (PATS). The
report describes results of the second half of a five-month Phase I
design study for an automatic target screener that can operate with first
generation thermal imagers employing common module components. The

period covered by this report is 1 January to 31 March 1978.

The objective of this effort is to produce a design for a prototype automatic
target screener (PATS). The screener will reduce the task loading on the
thermal imager operator by detecting and recognizing a limited set of high
priority targets at ranges comparable to or greater than those for an un-
assisted observer. A second objective is to provide enhancement of the
video presentation to the operator. The image enhancement includes: 1)
automatic gain/brightness control, to relieve the operator of the necessity
to continually adjust the display gain and brightness controls; and 2) DC

restoration, to eliminate artifacts resulting from AC coupling of the infra-

red (IR) detectors.

The report consists of four principal sections., Section 2 describes the
effort under the image enhancement part of the study; Section 3 describes
the target screener design activities. Section 4 describes the results of
the preliminary system design task. Plans for the next three-month

reporting period are included in Section 5.
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The image enhancement portion of PATS will consist of circuitry to operate
on the Common Module FLIR (MODFLIR) video output signal. This circuitry
will provide global gain and bias control in the form of feedback to the
MODFLIR to maintain the signal within the dynamic range of the electro-
optical multiplexer. The global gain and bias control circuit preliminary
design has been completed and will be implemented upon receipt of the GFE

MODFLIR.

Image enhancement will also include local area gain and brightness control
to enhance local variations of contrast and compress the overall scene
dynamic range to match that of the display. This circuitry has been com-
pleted and examples of its performance on videotaped thermal image data
were included, along with the circuit description, in the previous quarterly

1
report,

The third image enhancement circuit is for DC restoration, to eliminate the
streaking associated with loss of line-to-line correlation on the displayed
image because of the AC coupling of the detector channels. A breadboard
version of the DC restore concept previously described has been designed

and constructed and is undergoing checkout.

Sections 3 and 4 summarize the results of the target screener design task.
Section 3 describes the results of the subtasks involved with the design of
algorithms for detecting and recognizing targets. Section 4 describes the

system design preliminary results,

1D. E. Soland, et al.. "Prototype Automatic Target Screener, " Quarterly

Progress Report, Contract No, DAAK70-77-C-0248, ADA 050684,
January 15, 1978,




The target screening activities including data preparation and analysis,

image segmentation, and feature extraction were reported previously.1
The object classification and target decision tasks remaining are describ- :
ed in Section 3. A total of 385 frames of FLIR imagery has been digitized, |

e T

annotated, and debanded where necessary. These images contain tanks, |
armored personnel carriers (APCs), and some trucks, and represent
most of the imagery required for target screener design, training, and 5 '

j testing for the tank and APC classes.
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SECTION 2

IMAGE ENHANCEMENT

This section reports the progress on the image enhancement tasks of the

Prototype Autematic Target Screener (PATS).  Specifically, the tasks
addressed are synthetic DC restoration, global gain and bias control, and

local arcea gain and brightness control,
g

Iligure 1 is a functional diagram showing these three functions in PATS,
The hardware for the all-analog synthetic DC restoration has been bread-
boarded and is being tested; progress will be presented.  The global gain/
bias control hardware has been built and one algorithm is being tested on
the FLIR; this algorithm will be discussed. New developments on local

area gain/brightness control will be given,
SYNTHETIC DC RESTORATION

The algorithm, implementation, and justification for the all-analog approach
to synthetic DC restoration were discussed prvvinugly.l Since then, the
hardware has been breadboarded and is currently being tested on the simu-
lation test patterns,  The results from these test patterns have been good

thus far, Testing on the MODEFLIR is starting.

; L. ; . .
An earlier report did not cover fully all of the assumptions for the analog

synthetic DC restoration scheme, These assumptions are discussed below,

and those related to specific common module I'LIR properties are covered

in detail,
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The major assumptions for synthetic DC restoration are:

1. The average value of any video line is constant over the scene.

2. The actual scene background is varying slowly in the vertical

direction,

3. The scene background occupies more than 50 percent of a scan
8 p

line of video,

4. A straight line in the scene is straight in the video from the FLIR,

(There are no major vidicon scanning nonlinearities.)

5. The video from the FLIR is not rotated with respect to the scene,
or more specifically, with respect to the detector array. (There

is no vidicon rotation.)

6. Any horizontal scan line from the vidicon is produced by a single

detector or by weighted sums of adjacent detectors in the FLIR,

Assumptions 1 to 3 are scene-dependent. Assumptions 4 and 5 are proper-
ties of the vidicon, and Assumption 6 is related to the LLED-vidicon interface
and the scanning systems on both sides of the interfaces. The following
discussion gives the reasons for Assumptions 1 to 3 and shows that

Assumptions 4 to 6 can be satisfied in the common module FLIR,

Assumption 1 ensures that the average difference between two consecutive
video lines is zero. Assumption 2 with Assumption 1 ensures that the

difference is constant between consecutive video lines in the background




regions of those lines. With Assumption 3, thresholding will provide the
DC shift value of the difference between background regions; this technique

was discussed in an earlier report.2

Adjustments are available in the MODFLIR to adjust edge straightness
(Assumption 2) and vidicon rotation (Assumption 3).3 The accuracies of
these adjustments are not specified but they should be more than adequate
for DC restore to work properly; small overlap on the ends of a video
line will not affect thresholding or averages significantly. If this is a

problem, the ends can be "cut off'" to ignore information in these regions.

To determine the validity of Assumption 6, the common module FLIR must
be considered. In the I'LIR, the thermal scene is painted on the vidicon
surface by a linear array of up to 80 lighi-emitting diodes (LLED) scanned
horizontally in a 2:1 interlace format. Each detector output drives one
LED. The scanning format and the LED array dimensions are shown in
Figure 2a. Because the luminous intensity is not uniform over the entire
LED surface, a scene painted in one field is more intense at the LED
center than at the LED's outer edges. The 2:1 interlace scanning overlaps
in such a way that LED centers in one field scan over the gaps in the

LEDs in the other field. The approximate, normalized luminous intensity

2Solemd, p. 1%,

3Texas Instruments Inc., ""Operation and Maintenance Instructions with
Parts List for Multipurpose Observation Device, " September, 1976.
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distribution (NLID) is shown for individual fields in Figure 1b and for fields
taken together in Figure 1cX The accumulative NLID gives a close-to-
uniform "'painted" scene on the vidicon with additive overlap between
consecutive LED centers in adjacent fields. The resulting region between

LED centers is an interpolation between adjacent LEDs,

A line of video read from the vidicon should correspond to the output of a
single LED, This assumption is extended to include the weighted sum of
consecutive LEDs as is the case with 2:1 interlace scanning in the FLIR,
The only constraint is that the NLID of the LED array be approximately
uniform from top to bottom. For example, consider the thermal scene in
Figure 3a. Assuming cold is 0 and hot is 1, Figure 2b shows the video
generated by the LED for the even and odd fields. With about 400 active
video lines sampled from the vidicon every field, there are five equally
spaced sampled lines between each of the 80 LEDs. The approximate
video from the vidicon scanning in Figure 3 is shown in Figure 4. Figure
4a shows the detector and line scanning format; Figure 4b shows the video
waveforms. It can be seen that synthetic DC restoration is still usable on

this video since Assumptions 1 to 3 are still satisfied.

In conclusion, for scenes satisfying Assumptions 1 to 3 and with proper

vidicon alignment, the synthetic DC restoration method should work well

with the common module FLIR.

“To give an exact representation requires a detailed study of the FLIR
optics. It is thought that this is a fair representation of the NLID.
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GLOBAL GAIN/BIAS CONTROL

Global Gain/Bias Control
Implementation and Software

The algorithm and implementation for the PATS global gain/bias control
approach were discussed before.1 For review, the global gain/bias control
implementation diagram is shown in Figure 5. The upper and lower thresh-
hold exceedances of the FLIR output video are counted during an image field
and readby an 8748 microprocessor at the end of the field, From these
exceedance data, the gain and bias voltages are computed and fed back to
the post-amplifier stages in the FLIR. The algorithm to do the control is

in software in the microprocessor.,

The gain/bias control algorithm currently being tested in 8748 software
fixes the bias voltage and varies only the gain. The bias is fixed at the
midpoint of the upper and lower saturation regions of the vidicon and though
this bias setting may not appear optimal when viewing the video from the
FLIR, it is optimal for the vidicon and electronics; image enhancement will

improve the resulting video signal for better viewing.

A flowchart of the gain/bias control software is shown in Figure 6. The
gain (G) is updated depending on the relation of the average number of
exceedances (upper and lower exceedances summed) in eight fields of data
(NT) to three preset constants KO' Kl‘ and K2. These constants are
percentages of the maximum number of exceedances in a field (N), assuming

512 samples per video line. The current values of the constants are:

12
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K. = 0.002N

0
Kl = 0.01N N = 20,000
K2 = 0,03N

The gain is decreased gradually by an amount AGD if NT exceeds K, .
Decrement occurs until NT falls below Kl or reaches the minimum gain

(Gmin)' If NT falls below K, the gain is increased gradually by an amount

0.
AGI until NT goes above KO or the maximum gain (Gm

quantities AGD and AGI are fixed with AGD greater than AGI. The incre-

) is reached. The
ax
ment values are expressed as a percent of the total gain adjustment range

and have the following values:
AGD = 4%

G = 2%
o5

These small values of _\GD and AGI prevent oscillation but result in slow
adjustment of the gain. The adjustment is slow because the settling time of
the FLIR output to a step change in gain control voltage is about 0.5 seconds,
or 30 fields. As a result of this and the sampling of eight frames of thresh-

hold data, nearly 0.7 seconds of time is lost per gain update,

As an example of this, if the gain had to be decreased by 24 percent, the
time required to do so would be about 4 seconds. To skirt this problem,

the value of AGD can be varied by increasing its value when N, is larger.

T
Presently, the value of AGI must remain fixed because no information is
available if the scene falls below the thresholds (NT zero), The addition of
scene standard deviation as an adjustment parameter for low contrast

scenes is being considered to allow for a variable AGI.

15
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Global Gain/Bias Testing

The gain/bias control software is currently being checked out and has been
integrated with MODFLIR. It is expected that the algorithm will work well

on slowly varying scenes.

Modifications may be made to include scene standard deviation as a contrast

adjustment parameter,

LOCAL AREA GAIN/BRIGHTNESS CONTROL

The image enhancement local area gain/brightness control (LAGBC) algo-

rithm, implementation, and results on sample imagery were given previ-

ously}

16




SECTION 3

TARGET SCREENING ALGORITHM SIMULATION

This section covers the progress in this reporting period on the target

screener computer simulation, to include:
e Data base preparation
e Object extraction (segmentation) examples
Feature analysis and selection

Detection and recognition classifier methodology and prototype

design
Performance of the simulation on the test data base

Interframe analysis results

SUMMARY

The Night Vision Laboratory (NVL) data base was expanded to 385 digitized
frames. Modifications were made to the threshold computations and the
interval generation scheme. A selected set of 110 frames was processed
through the entire simulalion. The measured features were evaluated for

clutter discrimination and target classification. A preliminary set of

features was selected and used to design a prototype clutter rejection

classifier and a classifier to discriminate between tanks, APCs, and other

targets. This classifier was tested on the training data and it performed
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satisfactorily. A set of eight independent FLIR frames from a sequence
(one second apart) with moving targets was processed through this classi-
fier and the results are used to illustrate the powerful interframe analysis

approach,
DATA BASE PREPARATION

As we reported in the First Quarterly Progress Roporl.l our primary PA'TS
FLIR data base is derived from the Fort Polk FLIR videotape supplied by
NVL. The "NVL imagery' was used because it contains tanks and APCs

at most aspect angles and reasonable ranges. This day and night imagery
was acquired from a platform-mounted FLIR and is, therefore, appropriate
for the low elevation angles encountered in tank battle and helicopter pop-up
mission scenarios. In this reporting period we digitized 285 more sub-
frames of imagery from this videotape to complement the NVL frames (100)
digitized in the last period in an effort to complete representation of all
aspect angles of tanks and APCs. Table 1 summarizes the membership

of the NVL data base that now contains 385 digitized and annotated frames.
As seen from Table 1, we still do not have a complete representation of all
aspects of APCs. This is a reflection of the available aspect angles in the
videotape. Figure 7 is a collection of sample frames from this data base.

It illustrates the sensor and scene characteristics and shows how diverse

target signatures can be under different imaging conditions.
IMAGE SEGMENTATION

A few changes were made to the segmentation scheme reported in the PATS

January 1978 Quarterly Progress Report and are described below.

18
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TABLE 1. SUMMARY OF THE DIGITIZED FLIR DATA BASE

(NVL Data)
Aspect Angle (Average elevation angle = 0°)
Targs o | 45 | 90 | 135]| 180 | 215 | 270 | 315 | Total
Type
Tank 134 | 140 | 62 0 | 208 | 97 37 95 773
APC 65 23 0 0 58 | 63 50 0 259

Total number of frames = 385
Thresholds

Instead of the two thresholded binary images--one thresholded by a posi-
tive threshold and the other by an "absolute value'' threshold--we now have
two binary images, one obtained by a positive threshold and the other

by a negative threshold (about the background estimate). This scheme
extracts separately components which are hotter and colder (than the back-
ground). It is preferable to merge these components later, following
syntactic rules, than have an absolute value threshold, which does not have
the global information while at the low levels of the segmentation scheme

and therefore tends to merge, for example, cold clutter with a hot target.

Threshold Selection

The two intensity thresholds (hot TH' and cold Tc) are now computed using

a recursive line average (i.e., the standard deviation). For line n,

TH(n) = KH o(n) and Tc(n) = KC o (n)

19
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o(n) is given by a first order, recursive smoothed estimate of the standard

deviation of previous lines:

o) = (1-vx L|n-1,M -b-1,M)]| + yoln - 1)
M

I(n-1,M) is the image intensity at the point (n-1,M), and b(n-1,M) is the
background estimate at that point. vy determines the number of lines over
which this averaging is done. vy = 0.9 was chosen after experimentation and
gives an effective exponential weighting that decays to 0.1 in 22 lines.
Besides being easy to implement, this way of computing the threshold re-
tains the advantages of a "local' standard deviation estimate based only on
the previous line and is insensitive to anomalous changes in the standard
deviation from line to line. Thus, this variance estimate repluces the
global estimate reported in the January 1978 PATS 1'eport} An identical
scheme was implemented for smoothing the edge standard deviation estimate

for the edge threshold computation.

Interval Generation

The interval generation criterion reported in the January 1978 PATS roportl
is asymmetrical; that is, it depends on the order of the data presentation to
the algorithm (right to left vs, left to right). This is because an interval is
started when an edge and a bright sequence are encountered; the interval is
terminated when the bright sequence is interrupted (according to a smoothing
criterion). Therefore, if an cdge is present at the leading end of a bright
streak, an interval is generated, but if it is at the trailing end, no interval
is generated. Figure 8a, b, ¢, and d illustrates this phenomenon where we

see that the tank has pronounced trailing edges, but the leading edges are

not consistent, This causes the missing intervals.
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Figure 8,
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To alleviate this problem, a bidirectional, interval generation criterion was
conceived, simulated, and has proven robust, With this concept, an interval
is started if there is a streak of brights (or separately, colds) and terminated
when the bright ceases. But the interval is accepted if and only if there are
cither leading or trailing edges at the ends (see Figure 9), We call this
validation of the interval and it is quite easy to implement, The result is
identical to applying the previous interval generation Critorionl twice to the
scan line (forward and backward). This is shown in Figure 10, where the

intervals are much more consistent than in Figure 8d.

Results of Segmentation of NVL Data Base

A subset of 110 images were processed through the segmentation simulation,
Figure 11a, b, ¢, d, e, and f shows various stages of the segmentation pro-
cess, Figure lla is the original daytime FLIR frame containing an APC
and three tanks. Figures llband ¢ are the "hot" and "cold" thresholded
binary images. Figure 11d is the thresholded binary edge image. The hot
and cold binary images are separately associated with the edge image to
vield intervals (on a scan line basis). Hot binarized points give rise to

hot intervals and cold points give rise to cold intervals. Their identities
are kept separate (Figure 11e). Both hot and cold intervals are then separ-
ately associated into hot and cold bins (object components), This is shown
in Figure 11f. Here, the APC is entering the field of view and the middle
tank is extracted as a hot component (the engine) and a cold component,

Only the engines of the other two tanks are segmented as hot bins.

More examples of the object extraction process selected from the 110 frames

processed appear in Figures 12 through 15,
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a. FLIR image

C.

Figure 11,

"Cold'" thresholded binary image

Results of a Scene Adaptive Segmentation
Scheme
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d. Binary edge image

e, Object intervals
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f. Extracted object components

Figure 11, Results of a Scene Adaptive Segmentation
Scheme (concluded)
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These 110 images resulted in a total of 1, 746 bins or extracted objects,
Ground truth was subsequently provided manually for each object by pains-
taking examination of the segmentation output, the video disk image, and
the videotape. This resulted in 393 targets and 1, 353 clutter objects. A
large number (810) of these clutter objects occurred because of a digitiza-
tion characteristic on either edge of the image--the zero video portion was
digitized on some of the frames. This gave rise to a number of sraall

clutter bins. This can be seen in Figure 11fon the sides of the plot.

Figure 16 is a dendrogram that summarizes the ground truth on the extracted
objects. The numbers in parentheses denote the membership of each class,
Ground truth was separately provided to hot and cold (relative to the back-
ground) objects, "MT'" in Figure 16 means "missegmented' targets; in
our opinion these targets should not be used in training the recognition
classifier because they are likely to be very different from the paradigms
for the various target classes. Targets which were truly unidentifiable by
the observer were labeled UT (unidentifiable). We must stress again that
the ground truth was provided interactively with the help of the videotape
and not just on the basis of single frames. Thervefore, the number of
improperly segmented targets (MTs) should be viewed in this context, The
examples in Figures 12 through 15, where some of the targets are barely
visible on the single frames, also support this point. The hot spot classes
for tanks were necessitated because occasionally only the engines of the
tanks were extracted. When the whole tank was extracted, it was placed

in a different class, This was an attempt to recognize the tanks by the hot-

spots alone when only hotspots were visible,
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FEATURE EXTRACTION AND EVALUATION

The PATS classification process proceeds in two cascaded stages. Once
the object is extracted, a decision is made as to whether it is a potential
target. This screening step is clutter discrimination and should be simple
and fast, using easy to compute features, If an object passes this test,
more measurements are made and the object is classified according to
target type (tank, APC, unknown, etc.). This two-stage process weeds
out obvious (and abundant) clutter before expensive recognition feature

measurements need be made, thus enhancing the throughput of the system,

Table 2 shows the features evaluated as candidates for the clutter rejection
process. An initial prototype, clutter rejection classifier was designed
using these features. The cascaded threshold classifier (CTC) program,
which is a powerful analysis and design tool, was used to derive this classi-
fier. Figure 17 illustrates the CTC classifier structure, which is a piece-
wise linear classifier consisting of a number of linear discriminants.
Training the classifier consists of determining the various discriminant
coefficients that describe the hyperplanes and assigning each resultant

region (formed by the hyperplane) to one of the classes under consideration.

Three stages comprise the clutter rejection classifier. The first stage is

a set of simple cascaded thresholds on the area, bright count, average
width, and average target intensity, This was designed to remove the
"easy'' pathological clutter described previously (approximately 800 bins).
The second stage uses these thresholds and edge count, average background
intensity, average target intensity, average target contrast, and perimeter/

Yarea, This stage is to divide the data set into groups (subspaces) so that

it it il . '35
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TABLE 2. CLUTTER DISCRIMINATION FEATURES

° Area o Average target intensity
® dge count ® Peak target intensity

e Idge discontinuity e lLength/width

e Bright count ® Ay\'vmgo width

° Edge straightness ° Average target contrast
e Average background ° Perimeter/Varea

e Minimum target intensity e Bin color (hot/cold)

within each subspace, the targets and clutter are separable by linear hyper-
planes, which is done in the third stage. We omit the precise structure of
this classifier for the sake of brevity. The results of this clutter rejection

classifier are given below in Table 3.

TABLE 3. CLUTTER REJECTION PERFORMANCE

Reject Accept
Clutter 1227 124
Target 70 315
35
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FEATURE 1

KEY DECISION
CLASS 1 X l (000)
CLASS 2 L (100)
i i (101) U (110)

Figure 17. PATS Cascaded Thresholded Classifier Approach '
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The maximum number of vector products (discriminant computations)

needed is a measure of the classifier computational complexity. The clutter
rejection classifier, being a multistage classifier, poses different computa-
tional requirements depending on which branch of the classification tree one
goes down. However, the maximum number of vector products needed for
the deepest branch is 5, and the maximum number of features involved at

any given discriminant computation is 10.

We have deliberately biased the clutter rejection classifier in favor of
targets because we do not wish to miss targets at this early stage. More-
over, any accepted clutter may yet be removed in the subsequent (recogni-

tion and interframe analysis) stages.

This classifier can be further optimized to minimize the number of features
used (by further feature evaluation) and the number of stages of hierarchi-
cal discrimination, This will be done in the next reporting period. Further
simplification of the classifier has the added benefit of making it more robust

with respect to the training data.
RECOGNITION CLASSIFIER

The candidate recognition features--three classes of moment features and
the Fourier boundary descriptors (FBD)--were described in the first interim
report} Each class of these features was evaluated to determine its discrim-

inatory power with the well-segmented target bins.
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The Fourier boundary descriptors proved to possess very little separation
among the various target classes. Two-dimensional scatter plots of pairs

of these features taken at a time showed that all the classes appeared to

come from the same distribution. Figures 18 and 19 show scatter plots of

two pairs of the Fourier amplitudes to illustrate this point. As a consequence,

the FBD features were eliminated from further analysis.

The moment features proved to be of greater value for class discrimination,
but there was significant correlation among similar moments from gach

class (boundary, silhouette, and intensity). Figure 20 shows an example of
this correlation between Koo (intensity) and Koo (silhouette).‘ Therefore,

for the prototype classifier we chose the six intensity moments, the peak

and average contrasts, and the length/width (p+a/2)features (Table 4). Because
all moments “pa are normalized by (“20 gE "‘02) (see PATS first interim
reportl), the normalized o2 and Moo are perfectly negatively correlated.

Therefore, u20 was omitted,

A prototype classifier was designed with these nine features using the cas-
caded threshold classifier programs. Eight target classes were defined
(Table 5). Linear discriminants were computed to separate all pairs of
classes (28 pairs). All the target vectors were projected onto directions
orthogonal to each of these hyperplanes, and these one-dimensional projec-
tions were analyzed for class separation. Those that yielded the maximum
separation (or clustering) of the various classes were chosen and thresholds
were determined for each projection from this analysis. A total of six

discriminants were chosen.
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Figure 20. Scatter Plot of w20 (intensity) vs, u20 (silhouette)
(Shows correlation of "like'" moments from
different moment classes)
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TABLE 4/ RECOGNITION FEATURES USED IN
| PROTOTYPE CLASSIFIER

Intensity Moments

H11
Ho2
K30
‘ o
?j Ho3

e O T N e R

M1

Peak Contrast
Average Contrast
3 Length/Width

‘ TABLE 5. TARGET CLASS DEFINITION FOR THE
RECOGNITION CLASSIFIER

Class Definition

1 Cold Tanks < , > bl
Cold Tanks {
Cold APCs V4

Hot Spots =« > bR |
(from tanks only)

8%]

- W

Hot Tanks = 4 —=» A
Hot APCs = y \(» [/
Hot APCs

Cold UTs and Hot UTs

—
c 1 o O




These six discriminants define, at most, 26 regions in the hyperspace (see

Figure 17 for example). The next step defines the class membership of
each region to determine how the training data were classified. This step
simultaneously designs the classifier and yields an estimate of the classi-
fier performance. This process was done by histogramming the training
samples into the various regions and assigning each nonempty region to é
class depending on the majority class of the target training samples that

fell in the region.

Once the classifier was designed, all nonclutter samples (including the
missegmented targets) were run through the classifier, Table 6 summarizes
the classification results of the entire data set for both stages of classifica-
tions (clutter rejection and target classification). The number of false
alarms is also shown (102 in 107 frames) and is within the design goal
maximum of one per frame. As we will see later, interframe analysis

will significantly reduce this rate even further. From this table, probability
of detection equals 78 percent. Among the samples that were classified as
tanks or APCs, tanks were correctly classified 69 percent of the time,

The corresponding probability of correct recognition for APCs was 91 percent.
INTERFRAME ANALYSIS

To test the validity of interframe analysis for target classification, a 1
sequence of FLIR frames one-third second apart were acquired on a video 1
disk (Figure 21a). The sequence represents moving targets (APC and three

tanks) with partial and complete occlusion (of the middle tank) and partial

occlusion of the two tanks on the right of the field of view with each other,

Eight frames (now one second apart) were selected from this sequence and |
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independently processed through the segmentation and feature extraction

simulation programs. Figure 22 shows a sequence of eight frames from

Figures 21a and 21b segmented individually using the current PATS simu-

lation. Note that the APC on the left is entering the field of view and is

completely extracted in Frames 2 and 3.

Frames 4 and 5 and reappears as complete in Frames 6 and 8.

It is only partially segmented in

In some

frames, hot spots on the tanks are extracted because the colder areas of

the tanks are lower contrast with respect.to the background.

The colder

areas of the middle tank are also extracted in Frames 1,-2, 5, 6, and 8.

This tank is partially occluded behind a tree in Frames 3 and 4 and com-

pletely occluded in Frame 5.

This sequence also illustr qtes targets parnall\

occluding one another (the two tanks being mergod in Fr'nnes 6’ and 8).

TABLE 6. PERFORMANCE ON TRAINING DATA |

A

Classified Objects
T A U C
i 129 58 15 48] .250
/ 5 1 31 T
Ground A LH F 87
g U 16 8| 9| 14| a7
C 59 43 11 [12431356
102 False Alarms in 107 Frames
=0.78
PD 0.7
T = Tank
A = APC
U = Unidentified targets
C = Clutter
44
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The feature vectors from these extracted objects were input to the clutter
rejection and recognition classifiers. The result of this classifier for eight
objects is shown in Table 7 as object classification sequences. All four
targets are represented, as are four frequently occurring clutter objects.
Note that the clutter objects do not always appear on every frame at the
same relative location, which is an obvious cue. This sequence also illus-
trates the concepts of decision smoothing (the use of maximum a posteriori
likelihood classification based on the decision strings, for example). Thus,
the "U'" classification on Frames 6 and 8 could be changed to '"T'"' as a con-
sequence of decision smoothing., Similarly the decision "A" on object d in

Frame 7 would be changed to a "T" upon interframe analysis.

TABLE 7. OBJECT CLASSIFICATION FOR SEQUENCE
FROM FIGURE 22

Frame Number

1 2 3 4 5 6 7 8

a T A T A A T A T
b T T T A T T
c T T T T T U ‘ § U

ol d ; T T T T u A U

i A

8 e C C C

g C C C C

T = Target
C = Clutter
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These rules for decision smoothing are based on 1) the statistics of the
scene (the a priori probability of tanks, APCs, etc., in the scene); 2) the
bias of the classifier (the probability that a tank is classified as an APC

and vice versa); and 3) the assigned priority of the target class (how critical
it is not to call an APC a tank). The first and third parameters depend on
the operational scenario and can be specified by the tank commander, for

example. The second parameter could be determined by processing sequences

of imagery through the simulation.

However, we feel that a cost-effective approach to determining the classifer
bias will be to use the PATS hardware (upon completion) to gather statistical
data for the interframe decision smoothing algorithm. Processor 2 in PATS
is eminently suitable for this task because it is easily programmable and can

be interfaced to external peripherals for data transfer,
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SECTION 4

' ‘ SYSTEM DESIGN

HARDWARE DESIGN

The PATS hardware can be broken up into several functional units, as shown

in Figure 23. These functional blocks, detailed later, are:

E | e  Autothreshold--The automatic adaptation to varying contrast levels
P |

that produce three binary signals--hot, cold, and edge.

i e Interval generation--The logical combining of the binary signals

generated by autothreshold and a valid segmented object made up

of several intervals,

e First level features--The real-time generation of specific values

associated with each interval.

w 3 e Intensity data--The storage of digitized video data over the scene

of interest,

e Computer system 1--Processes the first level features and intensity

data for the detection and recognition of specified target types.

e Computer system 2--Provides for the diagnostic checkout of the

system and determines the type of symbol to be generated.

e Symbol generation--The generation of a symbol specifying the
target type recognized and the location in the scene. The symbol

is added to the displayed video.
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Autothreshold

The autothreshold structure is shown in Figure 24, It consists of two differ-
ent two-dimensional operations (edge filter and background filter). An
adaptive threshold is calculated for each scan line. The threshold calculated
becomes the threshold for the next scan line. The processed analog data are
compared to their respective, either a binary edge or a binary hot or cold,
threshold. If the data exceed their threshold, then a logical threshold is

generated. It will remain one as long as the data exceed the threshold.

In Figure 25, the edge signal derivation is shown. It is two-dimensional in
that three horizontal scan lines are used in calculating the edge. The imple-
mentation shown is for the horizontal component only. Three lines of video
are added together. A delayed version of this sum is then subtracted to give
a positive voltage for a rising edge and a negative voltage for a falling edge.
The absolute value is then taken, giving all positive voltage values. The

data are compared to the threshold T When edge is greater than T

B
the comparator then produces a logic one signal.

El

The edge threshold is calculated as shown in Figure 26. The edge signal is
integrated over the line time to get the average edge signal during one hori-
zontal TV line. During retrace, the input to the integrator is grounded.
The average output is recursively filtered using the parameter "a' as the
parameter that determines how many previous values are used. The previ-
ous sampled and held value is multiplied by "a' and the edge average is
multiplied by (1-a). This value is sampled during retrace and multiplied by

the constant KE which gives the threshold value TE'
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The background filter, shown in Figure 27, is a two-dimensional recursive
filter which operates with two time constants--one for the vertical direction
and one for the horizontal direction. The filter that operates in the horizon-
tal direction is a low pass RC filter whose time constant is a few pixels.

The vertical filter consists of a summing junction and a horizontal line delay
for storage of the background estimate. The input to the background esti-
mate is zero during times of a potential object, as indicated by the presence

of an interval on the previous scan line.

The switch is needed because the presence of a high contrast object would
get into the background, and if the object were large enough, the background
estimate might equal the object. This buildup is shown graghically in Figure
28. The switch is turned off when there is enough difference between the
object intensity and the background estimate, The switch is turned back on

when there is little difference between the intensity and background estimate,

The bright threshold used tor the binary hot and binary cold derivations is
calculated in a similar manner to that for the edge filter. The calculation
implementation is shown in Figure 29. The threshold is based upon the
difference between the raw video and the background estimate. There are,
however, separate multipliers for the hot and cold threshold, so that differ-
ent thresholds can be used for signals hotter than background and colder

than background.
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Interval Generation

The interval generation consists of starting and stopping criteria as well as
a validation criterion. Shown in Figure 30 is the overall interval generation.
Inputs are the hot and cold binary signals, the edge binary signal, and a

system clock. The output is an interval and a validation pulse.

The start/stop criteria (Figure 31) are based upon the presence of a signal
for a given duration of time. The digital line delays are used to get proper
phasing of the edge and bright (hot/cold) data, After the appropriate delays
are introduced, a given M of N values must be present before an interval is

turned on. The same is true for an interval to be turned off.

The presence of an edge must occur on one of three successive scan lines

in order to have a valid edge. This helps eliminate noise spikes.

The validation criterion (Figure 32) consists of looking for the coincidence
of valid edges and valid brights (hot or cold). If both occur and the length
of the interval does not exceed 32 clock pulses, the interval generated is
declared a valid interval. A maximum interval length of 32 clock pulses
allows a maximum target size of 1/16 of the total FOV, When the interval
is valid, a pulse is generated which is used to load the first level features,

generated during the interval, into appropriate latches.
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First Level Features

The first level features generated during an interval are shown in Figure 33,
During one horizontal scan line, the maximum number of intervals that will
be accepted are 16. If the number of intervals is greater than 16, an over-
flow is generated., The interval signal enables various counters whose out-

put value is the first level feature. These first level features are:

e [Edge count 6 bits
e Bright count 6 bits
e Hot or cold 1 bit

e Interval width 6 bits
e X position 9 bits
® Background estimate 8 bits
e Sum of intensities 8 bits

The edge count is a count of the time duration the edge signal is above the
threshold during the interval. The bright count is the count of either the hot
or cold signal during the interval time. The hot or cold bit is determined

by whether the object is hotter or colder than the background estimate.

The width count is a count of the time duration of the interval. It should
always be greater than or equal to the hot or cold count. The X position is
the position within the scan line and is used for matching successive inter-
vals and for determining the displayed symbol position if the object is a

target.
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The background estimate (Figure 34) is a sample of the analog background
estimate near the start of an interval., It is digitized and then latched as a

first level feature.

The sum of intensities feature is the eight most significant bits of the video
intensity sum during the interval. After the dataare latched and stored in
the first level feature, the 12-bit sum is cleared and waits for the start of

the next interval. This feature is shown in Figure 35,

Also shown in Figure 35 is the frame store or memory number 2. The data
are digitized in real time and stored in real time and are used for later

processing. The memory is 512 by 256 by 6 bits expandable to 512 by 512 by
8 bits.

The configuration for the memory (Figure 36) is a single-bit plane made up
of eight 16K memory chips. This memory configuration allows use of
slower than video rate memory chips but still allows data to be taken at
video rates. This process is accomplished by using high-speed shift

registers on the input and output.

Computer System 1

The first level features and the intensity data are processed by a single
high-speed computer system. This system (computer system 1) is shown
in Figure 37. The system consists of a one-line buffer (FIFO) for the first
level features; storage memory (RAM 1) for the entire frame-generated

first level features and scratch pad area; a 2901-based CPU; and a hardware
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multiplier-accumulator. RAM 2, already discussed, can also be considered
part of the computer system. A direct-memory access interface allows for

reading and/or writing into RAM 1 or RAM 2 by a second CPU.

The RAM 1 or Memory 1 configuration is shown in Figure 38. Both FIFO mem-
ories are configured 64-words long by 16-bits. Since there are 48 bits of first
level features, the data must be multiplexed before going into FIFO1. Then the
data are direct-memory accessed into RAM 1. At the endof the scanline all the
data inFIFO1 are transferred to FIFO2, Thetransfer of data into RAM 1 may
take longer than the horizontal retrace time if the number of intervals is quite
large. However, by doing a fast transfer from FIFO 1 to FIFO 2, an entire

scan line of time is available for transfer.

Computer System 2

After the frame data are processed, target position and class data are trans-
ferred to computer system 2 (Figure 39), During operation, the data are ana-
lyzed and a symbol of the proper size and type is generated. The joystick,
CRT, and floppy disk are used during the diagnostic checkout and training
phases. Target locations are identified for training by the joystick, and the

statistical data for various classes are stored on the disk.

Symbol Generation

The symbol generation consists of writing to a one-bit plane of memory with
location synchronized with the video. The symbol generation scheme is shown
in Figure 40. The symbol to be generated is controlled by software and hence

can be easily changed by changing a few locations in computer system 2

program memory.
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TIMING AND SYNCHRONIZATION

Associated with the operation of PATS is a master timing and synchroniza-
tion scheme (see Figure 41). The system must be capable of working with
either 525- or 875-line video data. The number of samples/line remains
fixed at 910 samples/line. The digital data will be sampied at. 512 samples
per horizontal line. Also included will be standard TV signal such as
composite blanking, vertical blanking, and horizontal blanking., A separate
clock will be provided for the CPU 1 cycle time.

PHYSICAL CONFIGURATION

It is anticipated that all the PATS hardware including both CPUs will fit into
one ATR (air transport racking) large chassis. Some of the external
functions to be provided will be test points, power on, enhancement on/off,
and target priority mode switch, Conceptually, this configuration will look
like Figure 42. The video level indicates the presence of video at the input
to the target screening function. Symbol control will also be provided so

that only a given cluss will be displayed.

Internal to the chassis will be space for 28 wired cards, though this may
decrease because some will be wire wrap cards and some will be printed
circuit., The approximate layout is shown in Figure 43. Power supplies

and cooling will be an integral part of the PATS chassis.
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SOFTWARE DESIGN

Work has begun on designing the implementation software for PATS, The
algorithms that are used in the simulation are being put into a form which

will run within the system architecture proposed in the previous subsection.

Figure 44 diagrams the proposed software functions. As was discussed in
the hardware subsection, these functions are partitioned between two CPUs.
CPU 1 segments a frame of video data into objects, classifies these objects,
and then reports classification, size, and location to CPU 2. CPU 1 proces-
ses data at the rate of ten frames per second; that is, all processing on a
single frame must be completed within 0.1 second. CPU 2 accumulates data
passed to it from CPU 1 over several frames, and based on an analysis of
these interframe data, generates a graphics overlay on the operator's video
monitor which highlights and identifies detected targets. In addition, CPU 2
performs nonreal-time diagnostics on CPU 1 hardware and software. The

software functions of both of these CPUs is discussed in more detail below.

Data Acquisition

CPU 1 receives image data via the interval and intensity memories shown
in Figure 44. These memories buffer real-time data so that they can be
processed by CPU 1 on a nonreal-time basis. The autothreshold hardware
processes every sixth video field and dumps real-time interval data to the
interval memory via DMA transfer on a scan line by scan line basis. These
data are processed by CPU 1, which then stores the processed data back
into the interval memory for later use. It should be noted that this fast

(under 200 ns access) 16K by 16-bit memory also serves as a scratch pad
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for CPU 1. The same frame that is processed by autothreshold is also digi-
tized and stored in the intensity memory. This memory is accessed by CPU
1 to obtain intensity information whenever it computes intensity moments on

an object,

Interval data produced by autothreshold during a scan line are dumped to the
interval memory during horizontal retrace in the format shown in Figure 45.
The block of data corresponding to a given line is headed by a packed word
giving the line nhumber and the number of intervals which are generated for
that line. Following this word is a group of 3 x (number of intervals) words
containing the packed features from each interval; i.e., three words are
used for each interval. Currently, the features packed into these words

are interval color (i.e., hot or cold--H/C), starting X position, interval
width, the sum of intensities over the interval (gI), background filter
sample (B), and interval bright and edge counts. No data are placed in the
interval memory for scan lines during which no intervals were generated.

A register maintained by the hardware indicates how much data have been

loaded into the memory.

Data Processing_

Bin Matching--The task of the bin matching procedure is to associate the
one-dimensional intervals characterized by the interval features into sets
of intervals which determine two-dimensional objects; that is, CPU 1
essentially must read interval data from the memory, reorder them, and
then write them back. The bin matching algorithm has been discussed in a
previous report1 and will not be described here in detail. Figure 46 lists

most of its key points. The algorithm is sequential, so that at any time
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1 e GROUPS INTERVALS INTO OBJECTS
- e OPERATES ON PAIRS OF INTERVALS _
e INVOLVES MIDPOINT COMPUTATION 1
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1 * HOTS MATCH HOTS; ‘COLDS MATCH COLDS

k| e OBJECTS WITH LESS THAN 2 INTERVALS ARE THROWN OUT
e 2901 BASED

Figure 46. Bin Matching Software

s 3 i LB 5

during processing of a frame, a number of partially completed objects or
"bins' will exist. Very simply, each bin accumulates object intervals on
successive scan lines that fall within the midpoint of the previous interval
assigned to the bin. Missed intervals are filled in up to three lines, If
there are no new intervals or scan lines, the bin is considered closed and
further processing is then done on the bin (such as computing the various

elementary features).

Work is proceeding to develop an optimized version of the bin matching algo-
rithm, which when implemented, will minimize the expected number of com-
parisons needed to match an interval against a list of active bins. Bins will
be sorted in ascending order according to the value of the midpoint of the

last interval associated with each bin, In this way, the relative locations of

83




bins are established across an image. Given an interval to be compared
against this ordered list of bins, the algorithm will then try to establish the
necessary conditions to achieve a bin match. Once these necessary condi-
tions have been satisfied by some bin, sufficient conditions are checked.

The necessary conditions for a match to occur are:
1. The bin and interval must overlap in the X (scan line) direction.
2. The bin and interval must have the same color.

The sufficient conditions are the midpoint matching criteria shown in Figure
46.

Listing the bins in ascending order will make establishment of the first
necessary condition above very inexpensive and will make determination of
when to stop comparing bins pessible (that is, once a bin is found entirely

to the right of an interval, it will be impossible to obtain a match with that
bin and all bins following it), Comparisons to establish the first necessary
condition will start with the bin nearest the left edge of the image and con-
tinue with those increasingly toward the right. Bins which do not satisfy

the necessary conditions for matching an interval will each require at most
three comparisons with the interval; most will require only one. Establishing
the sufficient conditions will require four comparisons. Therefore, a bin that
matches an interval will require seven comparisons using this scheme. How-
ever, most bins will not even overlap the interval and therefore will require

only one comparison.
Figure 47 shows a map of the way the interval memory during bin matching

is expected to appear. Interval features are loaded sequentially in real

time into the upper 8K words of the interval memory by the autothreshold
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Figure 47. Map of Interval Memory

hardware, using the data format in Figure 45. Two thousand words are
reserved for scratch storage required by the bin matching procedure. The
bins are developed in the 6K memory words following this scratch area with
wrap-around into the upper 8K. Note that bin matching essentially copies
interval data into the bins, so redundant interval data in the upper 8K of
memory can be overwritten, It is expected that a fixed length block of
approximately 160 words will be allocated for each bin; this block will
contain bookkeeping data necessary while a bin is open (e.g., bin endpoints,
midpoint, missed scans count, etc.) and features computed over the entire
bin after it is closed (e.g., total brights, moments, etc.). Table 8 shows
a possible format for this bin data. Active or open bins are linked together
in ascending order using a linked list structure; once a bin is closed, it

is removed from this list, Interval features that are unpacked to do bin

85




TABLE 8.

POSSIBLE BIN FORMAT

Word Contents
( 1 Address link to next bin
2 Midpoint (from last interval in bin)
3 Starting X
5 Bin color (H/C)
6 Consecutive missed scans count
7 Line number on which bin starts
8 Total scans count (N)
9 Active scans count
’ 10 X
11 Width
First interval{
in bin he Packed features
13
L
4N + 6 X
4N + 7 Width
Last interval 4N + 8
in bin 4N + 9} Packed features
4N + 10

160

Object features (target contrast,
moments, etc.)
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matching (e.g., starting X and width) are stored unpacked in the bins to
avoid the overhead of having to unpack them again later. Features which
are not needed for bin matching are left in their packed form. Note that
the starting X and width of each interval within a bin must be saved for the

median filter and for moment feature computations.

Bin matching and loading of the interval memory by autothreshold will
proceed in parallel while the interval data for a frame is being generated.
The interval memory will be loaded via direct-memory access transfers
from buffers in autothreshold. During the time this direct-memory access
is taking place, CPU 1 will not be able to access the memory. However,
between these transfers CPU 1 will try to do as much processing as it can.
If the frame being processed does not produce many intervals, it is possible
that bin matching will be complete by the end of the frame. If bin matching

is not completed, additional time will be used to finish it.

Median Filtering--Once bin is complete, CPU 1 will smooth the boundaries

of each bin using a one-dimensional median filter of width three. The values
whichare input to the filter are the endpoints of the intervals making up each
bin. A separate filtering operation is done on the left- and right-hand edges
of each object (see Figure 48). Each triplet of endpoints on a given edge is
sorted, and the middle endpoint of the triplet is assigned the middle value
from the sort. Note, however, that this filter is nonrecursive; only

original endpoints are input to the filter, not filtered ones. CPU 1 will
process all the intervals within each bin and update, where necessary,

starting X values and widths,
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* SMOOTHS BOUNDARIES OF OBJECTS FOUND BY BIN MATCHING

® OPERATOR ON INTERVAL TRIPLETS

* INVOLVES SORT OF 3 VALUES (2 COMPARISONS) ON EACH EDGE

LINE i-1 _[ Kt

RN B

LINE i+1 _] l

e 2901 BASED
Figure 48. Median Filter Software

Object Features and Classifier--Object features are computed by CPU 1 on

the median filtered bins in a hierarchical fashion. That is, less expensive

features are computed initially to do preliminary clutter screening, and

more expensive features are computed onthe unrejectedobjects in order to
do additional clutter screening and object recognition. Table 9 describes
some features that currently are candidates for preliminary clutter
screening; Table 10 lists features that currently are being used to do finer
target discrimination, The intensity moments are by far the mast expen-
sive and are computed only on those objects for which it is absolutely neces-
sary to do so. Clutter rejection and target classification is performed by a
tree-structured classifier consisting of thresholding on simple features and
features combined in discriminant functions. The features themselves are

: : : : 4
discussed in a previous interim report,

4Sclamd. pp. 81-100,
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TABLE 9. PRELIMINARY FEATURES AND CLUTTER PRESCREENING

» Simple features are computed for use in early

clutter discrimination .

e Four features per object
Area
Total brights
Average width

Average intensity

e Involves: 3 additions (approx.) per interval

2 multiplications, 4 comparisons per object

e Clutter objects thrown out

As was mentioned previously in the bin matching subsection, object features
computed by CPU 2 on the bins in the interval memory will also be stored
in these bins. CPU 2 is notified of the location, size, and classification

of targets detected by CPU 1, This can be done by having CPU 1 store

the latter information in a fixed set of locations in the interval memory,

interrupt CPU 2, and then allow CPU 1 to access the information via

direct-memory access.,
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TABLE 10. PRIMARY FEATURES AND CLASSIFIER

e Features include those from preliminary screening plus:
Total edges
Average background intensity
Moments
Length/average width
Average target contrast

Perimeter NA rea

Object type (hot or cold)

e Moments are by far the most expensive

pll, u20, w02, u21, pl12, 30, 03 centroids (worst case)

e Classifier does detailed clutter rejection and target recognition
-- Hierarchical

-=- Discriminant computations use 10 features

Computational Requirements

Estimates of the worst case computational requirements for CPU 1 are
summarized in Table 11. These estimatcs were made by first estimating
the amount of time needed to perform arithmetic operations (e.g., adds,
subtracts, etc.) with all operands present, and then doubling this time to
account for memory accesses needed to fetch the operands. Because
CPU 1 is a microprogrammable processor, all estimates of computational
requirements are initially given in terms of number of microinstructions

or microcycles which are then converted to nominal execution times.
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TABLE 11. CPU 1 WORST CASE COMPUTATIONAL REQUIREMENTS

e Bin matching + median filter

50 objects x 32 intervals/object x 30 yl/interval = 48K y | ( 9.6 ms)
e Features, excluding moments

50 objects (each 32 x 32) x 760 gy | /object =38K y | ( 7.6 ms)

® Moment features
10 objects (each 32 x 32) x 5. 7K y|/object =57 y | (11,4 ms)

e Frame classifier
10 objects x 200 y | /object = 2Kpy ] ( 0.4ms)
5K (29.0 ms)

+ 100% overhead 145K p |

145K 4 | (29.0 ms)
290K y | ( 58.0 ms)

> ~ 60% LOADING USING 200 ns y CYCLE

It was assumed that in a worst case situation, CPU 1 would initially have

to process 50 objects, each with a maximum size of 32 by 32pixels. Bin

matching and median filtering would be done on these 50 objects, along

with the computation of nonmoment features. Clutter screening by the

classifier would reduce this number to ten 32 by 32 objects on which

moment features would be computed for further clutter screening and

object recognition.
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Some justification for the estimates in Table 11 is offered below.

Bin Matching and Median Filtering--It is estimated that approximately 30

microinstructions will be required for each interval to do the seven or so
comparisons required to match a bin, and the four comparisons required
to do the median filter and the bookkeeping functions required in bin
matching (e.g., midpoint updating, etc.).

Features (excluding moments)--The mix of arithmetic operations on a 32 by

32 pixel object is as follows for various features:

Area (T width) 32 adds

T Edge 32 adds

T Bright 32 adds 2
Average background 32 adds, 1 division

Average intensity 32 adds, 1 division

Length/average width 1 division

Average width 1 division

Average target contrast 1 subtraction

Perimeterzlarea 64 adds, 64 subtractions,

64 absolute values, 1 division

Assuming it takes 1 microinstruction to do additions and subtractions, 3
microinstructions to do absolute values, and about 64 microinstructions to
do a 16-bit division, the latter operations amount to about 760 micro-

instructions per object. |
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Moments--The moment feature calculations use additions, subtractions,
multiplications, divisions, and table look-ups. In making estimates, it was
assumed that 16-bit by 16-bit multiplications would be done by using a
multiplier/accumulator chip external to the CPU 1 arithmetic logic unit,
taking three or four microinstructions per multiplication, Without going
into a detailed breakdown of the operations themselves, the estimate of the
number of microinstructions required to do the arithmetic operations for

the moments on a 32 by 32 pixel object breaks down as follows:

Centroids 262 microinstructions
w02, nu20 352 i
ull 2275 %
w30, 03 320 Y
u2l, pl2 2464 %

5673 microinstructions

or approximately 5. 7K microinstructions per object,

Frame Classifier--Assuming seven 10-feature discriminant functions, each

involving 10 multiply/accumulates, the estimate is 200 microinstructions

per object,

Summary--The totals are given in Table 11, including overhead. Assuming
200 ns per microinstruction, the total time to do the calculations is estimated
at 58 ms, which is approximately 60 percent of the available 100 ms (0.1 sec).
Note that 50 non-overlapping 32 by 32 pixel objects cannot physically coexist
in a frame using the PATS 512 by 256 sampling grid. This fact tends to lend

some credibility to the assertion that these are worst case estimates.
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CPU 2 FUNCTIONS

The processing requirements of CPU 2 are modest compared to those of
CPU 1. Software functions for CPU 2 are shown in Table 12 and in the
block diagram in Figure 44,

Interframe analysis and symbol generation are the only functions which
CPU 2 must perform in a field operational system. The other functions,
i. e., diagnostics, feature dumps, and test data generation, are necessary

for debugging the hardware and software in the laboratory or bench version.

TABLE 12, CPU 2 SOFTWARE FUNCTIONS

e Memory diagnostics

e Feature dumps for off-line training
e Interval features
e Object features

e Test data generation

e Interframe analysis

e Symbol generation
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Interframe Analysis and Symbcl Generation

li : The interframe analysis accumulates the classification results of at most

i 10 objects from each frame processed by CPU 1, tracks these objects on

: g a frame to frame basis, and outputs a cumulative classification for each of
them. Object tracking is done only on a symbolic basis; that is, instead

4 i of intensity information, only object class, size, and position are used.

4 Interframe analysis has been described in a previous report.1

Symbol generation refers to the generation of a graphics overlay on the

% operator's video monitor (see Table 13). This overlay identifies and

e oy

highlights targets that were found by CPU 1 and classified by interframe
analysis. A dot graphics memory covering an entire frame is maintained
by CPU 2 and its contents «re continually read out and mixed with the analog

: F video. CPU 2 maintains the graphics memory essentially by erasing and

Q g rewriting it every sixth frame. Target highlighting techniques may include
drawing a box around each target and generating some sort of identifying -
symbol; there are several options for highlighting since shapes and symbols

will be defined by software and not hardware,

TABLE 13, SYMBOL GENERATION SOFTWARE

® Generates target cues on video display

e X, Y, target type, target extents passed
from CPU 1 for each object

e Target enclosures generated by setting bits

in dot graphics memory
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Diagnostics, Feature Dumps, and Test Data Generation

These functions involve writing software to interface with the memories in
CPU 1, as shown in Figure 44, Integrity of these memories can be checked
by CPU 2; features generated by CPU 1 which are stored in the interval
memory can be dumped to disk or tape for checking CPU 1 software integrity
and off-line derivation of classifier coefficients, CPU 2 can also generate

test data for CPU 1 and store them in the interval and intensity memories.

A detailed test of the PATS software can be achieved as follows. A frame
is processed using a version of the PATS simulation designed to match the
implementation software. All data generated by the simulation are saved,
including interval data, object features, and classification results. CPU 2
is used to load the interval memory with the interval data, and the intensity
memory with the digitized frame. Next, CPU 1 is run on the data stored in
the interval and intensity memories (the autothreshold hardware is not
used); CPU 2 is used to dump the results generated by CPU 1 for compari-
son with the simulation results. In another mode, CPU 2 functions can be
checked by using diagnostics internal to CPU 2 and by allowing CPU 2 to
generate its graphics overlay on a video disk playback of the frame processed

by the simulation.

CPU 1 is a special purpose high-speed microprogrammed processor designed
to meet a required processing rate of 10-video fields per second. CPU 2,

on the other hand, is a more general purpose, off-the-shelf, "macro-
programmed' processor with far less computational loading than CPU1. A
special requirement of CPU 2 is thatitinterface withperipheral devices that

provide off-line storage (e. g., floppy disk), character data input (e.g., CRT),
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and hardcopy outpu* (e.g., line printer), This is because in addition

to providing operational functions (interframe analysis, symbol generation),
CPU 2 also supports diagnostics which provide a window into the operational

software and hardware.

CPU 1 Software Development

CPU 1 will be programmed at the microinstruction level, and as such
requires special development tools. A microassembler and text editor
will be used to allow microcoding at the mnemonic rather than the bit level.
Frequent changes will be made to the microcode during the development
period, so during that time, the microcode will reside in a fast RAM or
writable control store (WCS); PROM will be used in the operational system.
The microcode development facility will provide an interface with the

WCS and will allow single-step execution and address tracing of microcode

during execution.

CPU 2 Software Development

CPU 2 will be programmed like a typical minicomputer, i.e., using an
assembler and, if available, a higher order language. The interframe
analysis simulation is coded in FORTRAN, so using'’ FORTRAN will speed
development of interframe analysis implementation software. Because
CPU 2 will be interfaced with sophisticated peripherals (e.g., floppy disk),
it would be very helpful if I/O drivers for these peripherals were provided
by the manufacturer in a real-time operating system. The software
development tools for CPU 2, unlike CPU 1, can actually be resident on
CPU 2, thereby removing the problem of loading the CPU 2 memory with

program code.
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SECTION V

PLANS FOR THE NEXT REPORTING PERIOD

During the next reporting period, further refinements of the target screening
algorithms are planned. These refinements include improvements in 1)
segmentation, 2) clutter rejection, and 3) recognition algorithms. Improved
segmentation is desirable to provide a better outline of the target for
moment calculations. In particular, a merging of hot and cold bins corre-
sponding to different parts of the same target is necessary. We i:itend

to refine the feature selection for the clutter rejection classifier to provide
a simpler and more robust clutter filter. We also intend to simplify the
recognition classifier by further feature selection experiments. Also,

the k-nearest neighbor classifier for recognition will be investigated. The
use of k-nearest neighbor will simplify retraining of the classifier with

new training samples.

Functional design specifications will be written for each of the hardware
and software system elements. We also will begin detailed design of
the timing and synchronization circuits, CPU 1 and its associated memory 1

and memory 2.

Checkout of the image enhancement breadboards with the MODFLIR will

also be completed during the next reporting period.
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